248 research outputs found

    Variability of Dosing and Number of Medications Needed to Achieve Adequate Sedation in Mechanically Ventilated Pediatric Intensive Care Patients.

    Get PDF
    Children admitted to the pediatric intensive care unit (PICU) often require multiple medications to achieve comfort and sedation. Although starting doses are available, these medications are typically titrated to the desired effect. Both oversedation and undersedation are associated with adverse events. The aim of this retrospective study was to evaluate cumulative medication burden necessary to achieve comfort in patients in the PICU and determine relevant predictors of medication needs. In order to account for all of the sedative medications, z-scores were used to assess the population average dose of each medication and compare each patient day to this population average. Sedation regimens for 130 patients in the PICU were evaluated. Mean overall infusion rates of fentanyl, morphine, and hydromorphone were 1.67 ± 0.81 µg/kg/hour, 0.12 ± 0.08 mg/kg/hour, and 17.84 ± 13.4 µg/kg/hour, respectively. The mean infusion rate of dexmedetomidine was 0.59 ± 0.28 µg/kg/hour, and midazolam was 0.14 ± 0.1 mg/kg/hour. Summation z-sores were used to rank the amount of sedation medication needed to achieve comfort for each individual patient for his/her PICU stay in relation to the entire sample. Patient age, weight, and length of mechanical ventilation were all significant predictors of sedation requirement. This study will provide data necessary to develop a model of cumulative medication burden needed to achieve appropriate sedation in this population. This descriptive model in appropriately ranking patients based on sedative needs is the first step in exploring potential genetic factors that may provide an insight into homing in on the appropriate sedation regimen

    Effect of Selenium Nanoparticle Size on IL-6 Detection Sensitivity in a Lateral Flow Device

    Get PDF
    Sepsis is the body’s response to an infection. Existing diagnostic testing equipment is not available in primary care settings and requires long waiting times. Lateral flow devices (LFDs) could be employed in point-of-care (POC) settings for sepsis detection; however, they currently lack the required sensitivity. Herein, LFDs are constructed using 150–310 nm sized selenium nanoparticles (SeNPs) and are compared to commercial 40 nm gold nanoparticles (AuNPs) for the detection of the sepsis biomarker interleukin-6 (IL-6). Both 310 and 150 nm SeNPs reported a lower limit of detection (LOD) than 40 nm AuNPs (0.1 ng/mL compared to 1 ng/mL), although at the cost of test line visual intensity. This is to our knowledge the first use of larger SeNPs (>100 nm) in LFDs and the first comparison of the effect of the size of SeNPs on assay sensitivity in this context. The results herein demonstrate that large SeNPs are viable alternatives to existing commercial labels, with the potential for higher sensitivity than standard 40 nm AuNPs

    Trans-Ethnic Mapping of BANK1 Identifies Two Independent SLE-Risk Linkage Groups Enriched for Co-Transcriptional Splicing Marks

    Get PDF
    BANK1 is a susceptibility gene for several systemic autoimmune diseases in several populations. Using the genome-wide association study (GWAS) data from Europeans (EUR) and African Americans (AA), we performed an extensive fine mapping of ankyrin repeats 1 (BANK1). To increase the SNP density, we used imputation followed by univariate and conditional analysis, combinedwith a haplotypic and expression quantitative trait locus (eQTL) analysis. The data from Europeans showed that the associated region was restricted to a minimal and dependent set of SNPs covering introns two and three, and exon two. In AA, the signal found in the Europeans was split into two independent effects. All of the major risk associated SNPs were eQTLs, and the risks were associated with an increased BANK1 gene expression. Functional annotation analysis revealed the enrichment of repressive B cell epigenomicmarks (EZH2 and H3K27me3) and a strong enrichment of splice junctions. Furthermore, one eQTL located in intron two, rs13106926, was found within the binding site for RUNX3, a transcriptional activator. These results connect the local genome topography, chromatin structure, and the regulatory landscape of BANK1 with co-transcriptional splicing of exon two. Our data defines a minimal set of risk associated eQTLs predicted to be involved in the expression of BANK1 modulated through epigenetic regulation and splicing. These findings allow us to suggest that the increased expression of BANK1 will have an impact on B-cell mediated disease pathways.The work presented in this paper has been supported by the Ministerio de Economía y Competitividad, Spain (SAF2016-78631-P), partly co-financed by FEDER funds of the European Union, the Gustaf den V:e-80-års Fond and the Swedish Association against Rheumatism to M.E.A-R. In addition, this work was financed by the NIH P01 grant P01-AI-083194 to C.D.L., J.B.H., R.K., and M.E.A-R. JBH: NIH grants: R01 AI024717, U01 HG00866, P30 AR070549 and U01 AI130830 and the US Department of Veterans Affairs: I01 BX001834.C.D.L.: Center for Public Health Genomics. R.K.: NIH grant R01-AR33062. J.A.J.: NIH grants U54GM104938, P30AR053483

    The Unknown and Awakening Europe

    Get PDF
    Program for the fourth annual RISD Cabaret held in the Cellar at the top of the Waterman Building. Design by Daniel Kraft.https://digitalcommons.risd.edu/liberalarts_cabaret_programs/1003/thumbnail.jp

    The Science Case for an Extended Spitzer Mission

    Full text link
    Although the final observations of the Spitzer Warm Mission are currently scheduled for March 2019, it can continue operations through the end of the decade with no loss of photometric precision. As we will show, there is a strong science case for extending the current Warm Mission to December 2020. Spitzer has already made major impacts in the fields of exoplanets (including microlensing events), characterizing near Earth objects, enhancing our knowledge of nearby stars and brown dwarfs, understanding the properties and structure of our Milky Way galaxy, and deep wide-field extragalactic surveys to study galaxy birth and evolution. By extending Spitzer through 2020, it can continue to make ground-breaking discoveries in those fields, and provide crucial support to the NASA flagship missions JWST and WFIRST, as well as the upcoming TESS mission, and it will complement ground-based observations by LSST and the new large telescopes of the next decade. This scientific program addresses NASA's Science Mission Directive's objectives in astrophysics, which include discovering how the universe works, exploring how it began and evolved, and searching for life on planets around other stars.Comment: 75 pages. See page 3 for Table of Contents and page 4 for Executive Summar
    • …
    corecore